Application Market Basket Analysis of Circle-K Minimarket to Know Consumer Purchasing Patterns
Keywords:
Market Basket Analysis, Rapid Miner, Algoritma FP-Growth, Aturan Asosiasi, Pola PembelianAbstract
The increasing number of minimarkets in Indonesia, especially in Batam city, has led to intensified competition among them. To understand consumer purchasing patterns, the author employed the Market Basket Analysis method. Market Basket Analysis is an approach that examines customer shopping habits by identifying associations and correlations among various items. This study collected data directly from the Circle-K minimarket. The researcher collected and cleaned transaction sales data, and then organized it into tables using Microsoft Excel. The data was grouped into different departments, which facilitated importing it into RapidMiner software. Data processing was conducted using association rules and RapidMiner software with the FP-Growth algorithm to identify items frequently purchased together by consumers. For this research, a support value of 10% and a confidence value of 80% were used. This resulted in two association rules. The findings indicated that customers who purchased Dept 2 (snacks) always bought Dept 1 (beverages) simultaneously with a confidence level of 84.2% (0.842). Furthermore, customers who purchased Dept 2 (snacks) and Dept 7 (heavy meals) always bought Dept 1 (beverages) together with a confidence level of 100% (1.000), based on all transaction data recorded in June 2023. Hence, it can be concluded that these association rules are valid.
References
Dio, R., Dermawan, A. A., & Putera, D. A. (2023). Application of Market Basket Analysis on Beauty Clinic to Increasing Customer’s Buying Decision. Sinkron: jurnal dan penelitian teknik informatika, 8(3), 1348-1356.
Arnomo, S. A. (2021). Market Basket Analysis pada Barang Minimarket dimasa Pandemi Covid-19. JUSTIN (Jurnal Sistem dan Teknologi Informasi), 9(2), 127-131.
Ramadhan, R., & Setiawan, E. I. (2020). Market Basket Analysis untuk Swalayan KSU Sumber Makmur dengan Algoritma FP Growth. Insyst: Journal Of Intelligent System And Computation, 2(1), 34-39.
Jaya, I., & Hanadwiputra, S. (2021). Penerapan Algoritma Apriori Dalam Menentukan Strategi Persediaan Obat Terhadap Penjualan Obat Pada Apotek Karang Asih. Quality System Development, 11, 8-17.
Han, J., Pei, J., & Tong, H. (2022). Data mining: concepts and techniques. Morgan kaufmann.
Salu, N., Michael, A., Padang, S. Y., & Adda, M. S. (2022, October). Prediksi Persediaan Sepeda Motor Pada Dealer Yamaha Jaya Baru Motor Mengunakan Metode Frequent Pattern (FF-Growth). In Infinity (Vol. 2, No. 1).
Fitriaty, F., Lubis, T. A., Elliyana, D., & Saputra, M. H. (2023). Post-COVID-19 improvement strategies for strengthening the competitiveness of MSMEs in the tourism area of Jambi. Jurnal Manajemen dan Pemasaran Jasa, 16(1), 97-110.
Setiawan, A., & Anugrah, I. G. (2019). Penentuan pola pembelian konsumen pada indomaret gkb gresik dengan metode fp-growth. Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), 2(2), 115-125.
Prasetyo, V. R., Lazuardi, H., Mulyono, A. A., & Lauw, C. (2021). Penerapan Aplikasi RapidMiner Untuk Prediksi Nilai Tukar Rupiah Terhadap US Dollar Dengan Metode Regresi Linier. Jurnal Nasional Teknologi dan Sistem Informasi (TEKNOSI), 7(1), 8-17.
Sudibyo, N. A., Iswardani, A., Sari, K., & Suprihatiningsih, S. (2020). Penerapan Data Mining pada Jumlah Penduduk Miskin di Indonesia. Jurnal Lebesgue: Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika, 1(3), 199-207.